53 research outputs found

    Analysing co-evolution among artificial 3D creatures

    Get PDF
    This paper is concerned with the analysis of coevolutionary dynamics among 3D artificial creatures, similar to those introduced by Sims (1). Coevolution is subject to complex dynamics which are notoriously difficult to analyse. We introduce an improved analysis method based on Master Tournament matrices [2], which we argue is both less costly to compute and more informative than the original method. Based on visible features of the resulting graphs, we can identify particular trends and incidents in the dynamics of coevolution and look for their causes. Finally, considering that coevolutionary progress is not necessarily identical to global overall progress, we extend this analysis by cross-validating individuals from different evolutionary runs, which we argue is more appropriate than single-record analysis method for evaluating the global performance of individuals

    The prisoners dilemma on a stochastic non-growth network evolution model

    Full text link
    We investigate the evolution of cooperation on a non - growth network model with death/birth dynamics. Nodes reproduce under selection for higher payoffs in a prisoners dilemma game played between network neighbours. The mean field characteristics of the model are explored and an attempt is made to understand the size dependent behaviour of the model in terms of fluctuations in the strategy densities. We also briefly comment on the role of strategy mutation in regulating the strategy densties.Comment: 8 pages, 8 figure

    Universality of weak selection

    Full text link
    Weak selection, which means a phenotype is slightly advantageous over another, is an important limiting case in evolutionary biology. Recently it has been introduced into evolutionary game theory. In evolutionary game dynamics, the probability to be imitated or to reproduce depends on the performance in a game. The influence of the game on the stochastic dynamics in finite populations is governed by the intensity of selection. In many models of both unstructured and structured populations, a key assumption allowing analytical calculations is weak selection, which means that all individuals perform approximately equally well. In the weak selection limit many different microscopic evolutionary models have the same or similar properties. How universal is weak selection for those microscopic evolutionary processes? We answer this question by investigating the fixation probability and the average fixation time not only up to linear, but also up to higher orders in selection intensity. We find universal higher order expansions, which allow a rescaling of the selection intensity. With this, we can identify specific models which violate (linear) weak selection results, such as the one--third rule of coordination games in finite but large populations.Comment: 12 pages, 3 figures, accepted for publication in Physical Review

    A visual demonstration of convergence properties of cooperative coevolution

    Get PDF
    We introduce a model for cooperative coevolutionary algorithms (CCEAs) using partial mixing, which allows us to compute the expected long-run convergence of such algorithms when individuals ’ fitness is based on the maximum payoff of some N evaluations with partners chosen at random from the other population. Using this model, we devise novel visualization mechanisms to attempt to qualitatively explain a difficult-to-conceptualize pathology in CCEAs: the tendency for them to converge to suboptimal Nash equilibria. We further demonstrate visually how increasing the size of N, or biasing the fitness to include an ideal-collaboration factor, both improve the likelihood of optimal convergence, and under which initial population configurations they are not much help

    Strategy abundance in evolutionary many-player games with multiple strategies

    Full text link
    Evolutionary game theory is an abstract and simple, but very powerful way to model evolutionary dynamics. Even complex biological phenomena can sometimes be abstracted to simple two-player games. But often, the interaction between several parties determines evolutionary success. Rather than pair-wise interactions, in this case we must take into account the interactions between many players, which are inherently more complicated than the usual two-player games, but can still yield simple results. In this manuscript we derive the composition of a many-player multiple strategy system in the mutation-selection equilibrium. This results in a simple expression which can be obtained by recursions using coalescence theory. This approach can be modified to suit a variety of contexts, e.g. to find the equilibrium frequencies of a finite number of alleles in a polymorphism or that of different strategies in a social dilemma in a cultural context.Comment: 15 pages, 6 figures, Journal of Theoretical Biology (2011

    Dendrimers in Nanoscale Confinement: The Interplay between Conformational Change and Nanopore Entrance

    Get PDF
    Hyperbranched dendrimers are nanocarriers for drugs, imaging agents, and catalysts. Their nanoscale confinement is of fundamental interest and occurs when dendrimers with bioactive payload block or pass biological nanochannels or when catalysts are entrapped in inorganic nanoporous support scaffolds. The molecular process of confinement and its effect on dendrimer conformations are, however, poorly understood. Here, we use single-molecule nanopore measurements and molecular dynamics simulations to establish an atomically detailed model of pore dendrimer interactions. We discover and explain that electrophoretic migration of polycationic PAMAM dendrimers into confined space is not dictated by the diameter of the branched molecules but by their size and generation-dependent compressibility. Differences in structural flexibility also rationalize the apparent anomaly that the experimental nanopore current read-out depends in nonlinear fashion on dendrimer size. Nanoscale confinement is inferred to reduce the protonation of the polycationic structures. Our model can likely be expanded to other dendrimers and be applied to improve the analysis of biophysical experiments, rationally design functional materials such as nanoporous filtration devices or nanoscale drug carriers that effectively pass biological pores

    Framsticks: Towards a Simulation of a Nature-like World, Creatures And Evolution

    No full text
    In this paper we describe our attempt to create a nature-like simulation model of artificial creatures. The model includes physical simulation of creatures, their interaction with the environment, their neural network control, and both directed and open-ended evolution. We describe a complex, three-dimensional simulation system, where various fitness criteria can be selected for evolving species, and a spontaneous evolution can be run. The wor

    Investigation of Mechanical and Dry Sliding Wear Behaviours of AlB2AlB_2/PE Polymer Matrix Composites

    No full text
    In this study, mechanical and wear behaviour of polymer-boride composite (AlB2AlB_2/PE) materials produced through pressure moulding technique have been experimentally investigated. Three different composite materials that include 5 wt%, 10 wt%, and 20 wt% AlB2AlB_2 reinforcement phase were tested using pin-on-disk arrangement. Compared with the matrix, the 20 wt% AlB2AlB_2 composite shows a 71% increase in the ultimate tensile strength and the highest wear resistance
    corecore